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Figure: We demonstrate the performance of RMA on several challenging environments. The robot is
successfully able to walk on sand, mud, hiking trails, tall grass and dirt pile without a single failure in
all our trials. The robot was successful in 70% of the trials when walking down stairs along a hiking
trail, and succeeded in 80% of the trials when walking across a cement pile and a pile of pebbles. The
robot achieves this high success rate despite never having seen unstable or sinking ground, obstructive
vegetation or stairs during training. All deployment results are with the same policy without any
simulation calibration, or real-world fine-tuning.

Publication: Kumar, A., Fu, Z., Pathak, D., Malik, J. RMA: Rapid motor adaptation for legged
robots. RSS 2021.

Link: https://ashish-kmr.github.io/rma-legged-robots/
Project Page: https://ashish-kmr.github.io/rma-legged-robots/

Successful real-world deployment of legged robots would require them to adapt in real-time to
unseen scenarios like changing terrains, changing payloads, wear and tear. This paper presents Rapid
Motor Adaptation (RMA) algorithm to solve this problem of real-time online adaptation in quadruped
robots. RMA consists of two components: a base policy and an adaptation module. The combination
of these components enables the robot to adapt to novel situations in fractions of a second. RMA
is trained completely in simulation without using any domain knowledge like reference trajectories
or predefined foot trajectory generators and is deployed on the A1 robot without any fine-tuning.
We train RMA on a varied terrain generator using bioenergetics-inspired rewards and deploy it on a
variety of difficult terrains including rocky, slippery, deformable surfaces in environments with grass,
long vegetation, concrete, pebbles, stairs, sand, etc. RMA shows state-of-the-art performance across
diverse real-world as well as simulation experiments. Video results at https://ashish-kmr.github.
io/rma-legged-robots/.
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Figure 1: RMA consists of two subsystems - the base policy π and the adaptation module φ. Top:
RMA is trained in two phases. In the first phase, the base policy π takes as input the current state
xt, previous action at−1 and the privileged environmental factors et which is encoded into the latent
extrinsics vector zt using the environmental factor encoder µ. The base policy is trained in simulation
using model-free RL. In the second phase, the adaptation module φ is trained to predict the extrinsics
ẑt from the history of state and actions via supervised learning with on-policy data. Bottom: At
deployment, the adaptation module φ generates the extrinsics ẑt at 10Hz, and the base policy generates
the desired joint positions at 100Hz which are converted to torques using A1’s PD controller. Since
the adaptation module runs at a lower frequency, the base policy consumes the most recent extrinsics
vector ẑt predicted by the adaptation module to predict at. This asynchronous design was critical for
seamless deployment on low-cost robots like A1 with limited on-board compute.
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