Closing Report for Visual Locomotion: Synergistic Approach via Perception and Proprioception

Figure: We demonstrate the performance of RMA on several challenging environments. The robot is successfully able to walk on sand, mud, hiking trails, tall grass and dirt pile without a single failure in all our trials. The robot was successful in 70% of the trials when walking down stairs along a hiking trail, and succeeded in 80% of the trials when walking across a cement pile and a pile of pebbles. The robot achieves this high success rate despite never having seen unstable or sinking ground, obstructive vegetation or stairs during training. All deployment results are with the same policy without any simulation calibration, or real-world fine-tuning.

Publication: Kumar, A., Fu, Z., Pathak, D., Malik, J. RMA: Rapid motor adaptation for legged robots. RSS 2021.

Link: https://ashish-kmr.github.io/rma-legged-robots/ Project Page: https://ashish-kmr.github.io/rma-legged-robots/

Successful real-world deployment of legged robots would require them to *adapt in real-time* to unseen scenarios like changing terrains, changing payloads, wear and tear. This paper presents Rapid Motor Adaptation (RMA) algorithm to solve this problem of real-time online adaptation in quadruped robots. RMA consists of two components: a base policy and an adaptation module. The combination of these components enables the robot to adapt to novel situations in fractions of a second. RMA is trained completely in simulation without using any domain knowledge like reference trajectories or predefined foot trajectory generators and is deployed on the A1 robot without any fine-tuning. We train RMA on a varied terrain generator using bioenergetics-inspired rewards and deploy it on a variety of difficult terrains including rocky, slippery, deformable surfaces in environments with grass, long vegetation, concrete, pebbles, stairs, sand, etc. RMA shows state-of-the-art performance across diverse real-world as well as simulation experiments. Video results at https://ashish-kmr.github.io/rma-legged-robots/.

Figure 1: RMA consists of two subsystems - the base policy π and the adaptation module ϕ . **Top:** RMA is trained in two phases. In the first phase, the base policy π takes as input the current state x_t , previous action a_{t-1} and the privileged environmental factors e_t which is encoded into the latent extrinsics vector z_t using the environmental factor encoder μ . The base policy is trained in simulation using model-free RL. In the second phase, the adaptation module ϕ is trained to predict the extrinsics \hat{z}_t from the history of state and actions via supervised learning with on-policy data. Bottom: At deployment, the adaptation module ϕ generates the extrinsics \hat{z}_t at 10Hz, and the base policy generates the desired joint positions at 100Hz which are converted to torques using A1's PD controller. Since the adaptation module runs at a lower frequency, the base policy consumes the most recent extrinsics vector \hat{z}_t predicted by the adaptation module to predict a_t . This asynchronous design was critical for seamless deployment on low-cost robots like A1 with limited on-board compute.