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Proposed Method:

Architecture: Since the two main factors in performance of different models are proper ranking
and grouping, we propose a semantically-guided affinity-based approach. These approaches
have been used successfully for sparse depth completion [16] and they tend to generalize better
across multiple datasets. Our approach combines this methodology with the rich geometric
features extracted by the depth feature encoder used in SA-net [7]. There are two parts to the
process: Affinity estimation, and Affinity Propagation. We start by estimating the pairwise
affinity between neighboring pixels. In order to achieve this, we use the semantic feature map
extracted from a pre-trained semantic segmentation module [17] along with the original
high-resolution RGB image. These feature maps are used to estimate the affinity, and once
affinity is estimated, we use Affinity Propagation to selectively propagate the geometric features.
These propagated geometric features are finally used to predict the final output.
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Figure 5: Proposed network architecture; we compute pairwise affinities using semantic
features, and integrate the encoded features using this estimated affinity.

Dataset: Choice of dataset is crucial as RGBD datasets like NYUD tend to have poor
information close to edges. We experimented with MegaDepth, HR-WSI, Hypersim, and the
SA-Net, and in our ablation experiments, we found the combination of NYUD and the custom
SA-net dataset to be the best combination, using Hypersim for fine-tuning.

Results: Our method generalizes better to the iBims-100 dataset, achieving 4% better DBE
completeness error, and 11% better DBE accuracy than previous art even without a refinement
stage. The following visualization shows our method is better at preserving thin structures which
are parts of the foreground objects. A compilation of visual results can be found here.


https://drive.google.com/file/d/1evIvchNI3DzT5XrK7e9_XELhq2u4f3GW/view?usp=sharing
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