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Overview and Related Work The study of reinforcement learning (RL) has been traditionally dominated by
dynamic programming (DP) approaches (2). An alternative approach exists known as the V − LP, based on linear
programming (LP) (6, 10), and it has recently received renewed interest for its potential ability to circumvent the
optimization challenges of DP-based approaches in exchange for more mature and well-suited techniques associated
with convex optimization (1, 4, 5, 15, 16). While these LP-based algorithms provide theoretical guarantees, they
have thus far not shown good practical performance competitive with DP-based algorithms.

In contrast, a variant of the LP approach known as the Q−LP (11, 12, 13) has demonstrated impressive practical
performance, but has not yet been shown to enjoy the same theoretical guarantees as the V − LP. A fundamental
feature of the Q− LP approach is its use of a regularized form of the standard LP objective. This seems to hint
at a connection to state-of-the-art solutions in deep RL, which often rely on the use of entropy regularization for
better training stability (8, 9). Moreover, the use of entropy regularization has recently been identified as a key
element for providing convergence guarantees of DP−based policy optimization algorithms (3, 7, 14) although
the analyzed settings are typically far removed from the deep function approximators used in practice. Whether
LP-based approaches can provide a better combination of good practical performance and guarantees in realistic
settings is an open question of great interest.

Contributions The preprint resulting from our work can be accessed at https://arxiv.org/abs/2103.
09756. In our work we provide the first finite time convergence rates for the REPS algorithm in the literature.
We derive Accelerated Gradient Descent rates for REPS in the setting where the model is known to the learner.
Similarly and under an explorability assumption we are able to derive convergence rates for optimization of the
REPS objective based on Stochastic Gradient descent Steps.
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