
Introduction:
As larger models on larger datasets have often shown better performance [Li2020], the parameter size of
NLP models is growing over time. For instance, RoBERTa [Liu2019, Strubell2019] was trained using a
thousand GPUs, and it cost nearly five million dollars to train the final GPT-3 model [Brown2020].
Toward this end, In this project, we revisit an old idea in deep learning:  echo state networks [Jaeger2001],
where we add fixed layers with random features to Transformers. These layers increase the depth of the
model and consequently improve its representational power, but are much more computationally efficient.
The proposed method shows improvements in wall-clock compute time until convergence, as well as
overall performance, on various machine translation and (masked) language modelling tasks.

Proposed Method:
Our approach is based on a very simple idea. Neural networks are trained via backpropagation, which
involves consecutive steps of matrix addition and multiplication, i.e.,

for some objective J, parameterization θ and learning rate η, with the gradient computed via the chain
rule, where Li is the i-th layer of the neural network and x is the input. Let L = Transformer(X) be a single
layer in a Transformer network, i.e.,

Now, during every “backward pass”, we compute the Jacobian for parameters θL at layer L, which are
used to update the parameters of θL, as well as to compute the next layer’s Jacobian, thus
back-propagating the gradients. In this project, however, for some of the layers, we still backpropagate
through them to compute gradients for earlier layers, but we never update their parameters. As a result,
these layers stay fixed at their random initialization, saving computational resources.

Results:

We evaluate the proposed approach on a variety of well-known tasks in natural language processing,
namely: machine translation, language modelling and masked language model pre-training. We propose to
measure this trade-off via the area under the convergence curve (AUCC): similarly to how the area under



the receiver operating characteristic (AUC-ROC) measures a classifier’s performance independent of the
classification threshold, AUCC measures a model’s performance independent of the specific compute
budget. All the experiments are benchmarked using the same hardware and set all the hyper-parameters
the same as in fairseq.

Figure 1 here shows the results for IWSLT (left) and WMT (middle), enwiki8 (right). On the y-axis we
show validation AUCC for the BLEU metric; on the x-axis we show the number of updatable layers in the
encoder. At test time with BLEU and during training with AUCC, reservoir transformers outperform
regular transformers for almost all encoder depths. The FFN Reservoir seems to work best in both cases,
which is surprising because it does not have any self-attention component at all. This finding shows that
self-attention, or the mechanism to summarize context information, should be learned if present. Once the
context features have been gathered, a random projection via a fixed FFN module appears to be beneficial.

The above table presents the wall-clock time (averaged over multiple runs) saved for WMT for different
model types and encoder depths.  We save as much as 27% time until convergence of a 24 layer model on
WMT as much with the same number of updateable layers. One other noticeable point is that we can see
that the T Reservoir achieves a similar performance to LayerDrop on IWSLT and WMT in terms of
wall-clock per epoch and wallclock time to the best performance. However, on both tasks, FFN Reservoir

https://github.com/pytorch/fairseq


performs much better than LayerDrop in terms of efficiency per epoch. As a point of reference, a
three-hour gain on WMT translates to a gain of several days in the training of bigger transformer models
like GPT-3 [Brown2020].

Furthermore, we extend the idea with a  synthetic gradient predictor that allows for skipping the backward
pass. As shown in the following table, the backskip reservoir approach leads to a higher maximum BLEU
score than the regular transformer, with a much higher AUCC and much lower training time. This finding
opens up intriguing possibilities for having parts of neural networks be completely frozen both in the
forward as well as in the backward pass, while still contributing to the overall model computation.

Pre-trained masked language modelling architectures like RoBERTa [Liu2019] can benefit from having
some of their layers frozen, both during pre-training as well as when fine-tuning on downstream tasks in
our complete paper. For the next steps, we are extending these findings to find subnetworks with random
initialized Transformer with pruning techniques that may still preserve the decent performance.

Milestones:
This work has been published at the ACL2021 main conference. https://arxiv.org/pdf/2012.15045.pdf
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