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1 Overview
Program synthesis from input-output (IO) examples has been a long-standing challenge. While recent works demonstrated
limited success on domain-specific languages (DSL), it remains highly challenging to apply them to real-world programming
languages, such as C. Due to complicated syntax and token variation, there are three major challenges: (1) unlike many DSLs,
programs in languages like C need to compile first and are not executed via interpreters; (2) the program search space grows
exponentially when the syntax and semantics of the programming language become more complex; and (3) collecting a
large-scale dataset of real-world programs is non-trivial.

To address these challenges, we propose LaSynth that learns the latent representation to approximate the execution
of partially generated programs, even if they are incomplete in syntax (addressing (1)). The learned execution significantly
improves the performance of next token prediction over existing approaches, facilitating search (addressing (2)). Finally,
once trained with randomly generated ground-truth programs and their IO pairs, LaSynth can synthesize more concise
programs that resemble human-written code. Furthermore, retraining our model with these synthesized programs yields
better performance with fewer samples for both Karel and C program synthesis, indicating the promise of leveraging the
learned program synthesizer to improve the dataset quality for input-output program synthesis (addressing (3)). In the eval-
uation, LaSynth achieves 55.2% accuracy on generating simple C code with tens of tokens including loops and branches,
outperforming existing approaches without executors by around 20%.

This work is under review for NeurIPS 2021, and the preprint is available here: https://arxiv.org/abs/2107.
00101. We present the key results below, and more details can be found in the preprint.

2 Approach

2.1 Latent Execution Framework
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Figure 1: (a) An overview of LaSynth model architecture. (b), (c), and (d) present the details of the program decoder, latent executor,
and the operation predictor.

As shown in Figure 1, we propose the latent execution framework that improves over standard program synthesis ar-
chitectures. The standard program decoder architecture typically does not achieve strong performance when the program
complexity increases. One main reason is that the standard program decoder only takes the initial IO pairs as the input
without considering the program execution, thus the learned representation for the partial program does not effectively guide
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Table 1: Results on Karel (left) and C (right) datasets.

Approach Gen Exact

LaSynth 83.68% 41.12%
Exec 86.04% 39.40%
Bunel et al. 77.12% 32.17%
Shin et al. 81.30% 42.80%

Approach Accuracy

LaSynth 55.2%
NoAttentionInDecoding 53.5%
NoOpPredictor 53.7%
NoPartialExecutor 42.9%
NoExecutor 38.6%
RobustFill 37.6%
Property Signatures 34.5%

Figure 2: Results of iterative retraining on Karel (left) and C (right) datasets.

the synthesis process. To address this challenge, our latent executor (Figure 1(c)) maintains a second representation Ît during
program decoding. Intuitively, Ît−1 models the hypothetical input of the partial program pt...T so that its output becomes O.

2.2 Data Regeneration and Iterative Retraining

Interestingly, once our model is trained on the initial random generated programs, the predicted program becomes more
concise and resembles human-written code. While the exact token match accuracy is low even on the training set, the model
still satisfies the IO pairs for many problems. We leverage such a phenomenon to construct a new dataset with higher-quality
programs. Specifically, we run beam search on the trained model to predict program given input-output pairs in the training
set. If model prediction satisfies all the input-output examples and held-out cases, we replace the original program with the
prediction. Afterward, we re-train the model on the new dataset.

3 Results

We present the overall results of LaSynth and baseline model architectures in Table 1. On both Karel and C benchmarks,
LaSynth outperforms all baselines that do not incorporate the partial program execution information. In Figure 2, we fur-
ther show the effectiveness of iterative retraining. We observe that retraining for one iteration is sufficient, and it significantly
improves the generalization accuracy especially when the training sample size is small.

4 Future Work

We plan to extend our LaSynth framework to synthesize more complicated real-world code, and we list some promising
directions as follows.

• Train the latent execution framework on real-world C code. Given that the C programs in our benchmark are randomly
generated, their complexity and diversity still do not match the human-written code. We plan to train our model on a
large-scale collection of human-written programs, and evaluate the synthesis performance on real-world code.

• Design a better model architecture for the latent executor, and build upon the recent advancements in large-scale
pre-trained language models.

• Extend our iterative retraining scheme to improve the quality of benchmarks including real-world code. We can also
combine our technique with other approaches for reducing the bias of data distributions, so that the trained models
could better generalize to new coding tasks.

2


	Overview
	Approach
	Latent Execution Framework
	Data Regeneration and Iterative Retraining

	Results
	Future Work

