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Motivation. Consider a human-robot team collaborating on everyday tasks like unloading groceries, preparing
dinner, or cleaning the house. Such an assistive robot should coordinate with its partner to efficiently complete the
task, without getting in their way. For example, while tidying the house, if its partner starts cleaning the kitchen,
the robot could start cleaning the living room to maximize efficiency. If the robot notices its partner loading the
dishwasher, it should prioritize bringing dirty dishes from the living room to the kitchen, instead of rearranging
cushions. This requires the robot to reason about not only its own embodiment (to avoid getting in the way of the
human), but also about its partner’s actions and intentions to efficiently assist them. A commercially useful robot
should be able to achieve some level of commonsense reasoning of human intentions through pre-training. Then,
from interactions and additional feedback, the robot should be able to further accommodate its partner’s specific
habits and preferences. In this project, we aim to study approaches that can enable a natural way for humans
and robots to collaborate, while adapting to each other’s needs, and incorporating and seeking human feedback.

Related Work. Embodied AI has seen great advancements in simulation platforms [1, 2, 3] and new task
specifications [4, 5]. Object rearrangement is a task of importance for home robotics [6], and a variety of simulators
support it [7, 8]. We will utilize the Home Assistant Benchmark (HAB) in AI Habitat [8] for human-robot
collaboration. Multi-agent RL (MARL) studies multiple agents acting to complete a task like moving furniture
[9]. Unlike these works, we focus on learning embodied agents that can adapt to new partner preferences at
evaluation time, which one can formulate in two different ways: as zero-shot coordination (ZSC) [10, 11] or as
assistance POMDPs [12]. Overcooked [13] and Hanabi [14] are common benchmarks for studying such problems
[10, 15, 16] in discrete state and action spaces. In contrast to these, we will study ZSC in a complex, visually
realistic 3D environment using continuous observations and actions. Learning from human feedback aims to align
the objective of the agent with that of the human [17]. While the underlying human reward is often subtle and
expensive to collect, researchers have found that people reveal their preferences in various ways through language or
reactions [18] and proposed methods [19] for studying them. Recent works [20] have extended preference learning
to deep learning with high dimensional features, leading to breakthroughs in LLM [21].

Novelty and Innovation. Our novelty lies in the problem we address - adapting robotic agents to human
partners in human-robot collaboration settings. While previous works study learning from human preferences
where the robot acts in isolation, we focus on the problem where the robot needs to personalize while collaborating
with the human. Our innovation lies in adapting recent progress in learning from human feedback to the task of
human-robot collaboration. We believe that this is an understudied, yet incredibly important direction that can
guide the personalization of assistive agents such as ChatGPT to collaborate with their users and tune in to their
goals and preferences though interactions with them. Our realistic, long-horizon, and embodied test-bed based in
Habitat also makes the study more convincing and applicable to embodied applications in robotics.

Technical Objective. Specifially, we aim to achieve the following goals as part of this collaboration:

1. Adapt the AI Habitat simulation [8] to study human-robot collaboration, with a focus on everyday, long-
horizon tasks, dealing with realistic sensing and actuation, partial observability in collaborative tasks and
unknown partner states and intentions.

2. Develop zero-shot coordination approaches which perform well at long-horizon, everyday tasks. Evaluate
learned policies in a human-in-the-loop setting.

3. Develop algorithms that enable few-shot learning and learning from human feedback for adapting the learned
policies for personalization.

Potential for Collaboration. We will use the AI Habitat simulator from Meta AI, including recently developed
features like human simulation, human-in-the-loop evaluation and Spot robot stack. UC Berkeley collaborators
will provide expertise in human-robot collaboration, especially, learning from human preferences and feedback.
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