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Context. Recent years have witnessed an explosion of ML papers inspired by optimal transport
(OT) theory [Villani, 2008]. In particular, using the minimal distance estimation (MDE) [Basu et al.,
2011] framework with OT distances has resulted in several works, from training of generative mod-
els [Arjovsky et al., 2017] and auto-encoders [Tolstikhin et al., 2018], to clustering [Cuturi and Doucet,
2014], trajectory inference [Hashimoto et al., 2016], and non-parametric testing [Ramdas et al., 2017].
Several fields of science have also been influenced by OT, notably single cell genomics [Schiebinger et al.,
2019] or neuroimaging [Janati et al., 2020].

Why this project? For OT ideas to continue to bear fruit in ML, it will be necessary to tackle
longstanding challenges, from both statistical and computational points of view: the computation is
notoriously expensive, and the plug-in estimation suffers from the curse of dimensionality [Fournier and
Guillin, 2015, Weed and Bach, 2019]. Therefore, the aforementioned applications should, in principle,
somewhat fail in high-dimensional setting despite being theoretically motivated [Bernton et al., 2019].
Although assuming smoothness of the underlying densities may help [Weed and Berthet, 2019, Hütter
and Rigollet, 2021], the computational complexities of these estimators degrade exponentially with the
dimension. In practice, these issues do play a role since they entail a lack of robustness and instability
with respect to inputs [Ling and Okada, 2007, Pele and Werman, 2009, Paty and Cuturi, 2019].

Plan. Our goal in this project is to bridge the statistical-computational gap along two directions:
(1) compute a plug-in estimator based on low-dimensional projections; (2) compute a dimension-free
statistical estimator based on kernel mean embeddings and positive definite operator characterization.

1. Project and Estimate. Paty and Cuturi [2019] proposed to seek the k-dimensional subspace
(k > 1) that maximizes the OT distance between two measures after projection, resulting in a projec-
tion robust Wasserstein (PRW) distance, providing a generalization of the popular sliced Wasserstein
distance [Rabin et al., 2011]. During the past year, we have focused on statistical and computational
properties of the plug-in estimation of PRW and derived a bunch of results, including dimension-
free sample complexity, consistency and central-limit theorem under model misspecification, nonconvex
max-min computational model and provably efficient algorithms based on Riemannian optimization
(NeurIPS’20 + AISTATS’21 papers). We will extend these works by studying their differentiability, in
order for them to fit naturally in the OTT toolbox1.

2. RKHS Potentials. Vacher et al. [2021] proposed an alternative approach a few weeks
ago, with follow-up potential: their dimension-free computational upper bound was established using
an interior-point method (IPM) to solve a large-scale conic problem. We find great opportunity in
replacing IPMs with new algorithms, able to exploit the problem structure and bypass the computation,
storage, and factorization of a large-scale Schur complement matrix. Our plan includes: (1) Find
the dimension-free statistical estimators for multimarginal OT (MOT) [Pass, 2015] and Wasserstein
barycenter problem (WBP) [Cuturi and Doucet, 2014] (both problems have been recognized as the
backbone of numerous applications). (2) Develop efficient algorithms for new estimators for OT, MOT
and WBP and demonstrate their practical implications in ML.

Potential for collaboration. These projects build on several previous projects on algorithmic
OT in collaboration with Google researcher M. Cuturi, developing provably efficient algorithms for
OT, MOT and WBP and providing novel computational hardness results for fixed-support WBP (3
published, 1 submitted works together with T. Lin and M.I. Jordan). An important expected outcome
will be to improve the OTT toolbox with new algorithms.

1https://github.com/google-research/ott
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