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1. Summary
Robot safety is a key bottleneck for learning legged locomotion. During initial exploration, robots
could burn out motors, fall, or damage hardware. To ensure safety, many learning methods limit
explorations resulting in suboptimal performance. We draw inspiration from animal learning: baby
animals explore freely due to their small sizes and light weights; this learning carries through
subsequent size and morphological changes with growth. We hypothesize that small robots can learn
a policy with reduced safety concerns, and the policy can be adapted towards larger robots. In our
study, we showed successful learning of a scale-normalized state/action representation, combined
with a scale-invariant universal policy, to control a simple dynamic system cart-pole. We extend our
effort towards a more complicated locomotion robot, and enable safe policy transfer to real robots by
combining policy transfer across scales and sim-to-real policy transfer.
2. Related Works
[1] transfers policies among multiple robots with known physical parameters. [2] proposes a policy
domain transfer with different observation spaces but not different scales of robots. [3] transfers skills
between robots of different morphologies but requires each robot to learn skills. [4] adapts locomotion
policies to new environments through latent space optimization. Our previous UCB-Google
collaboration [5] transfers human demonstrations to real robots in navigation settings. Our previous
work [6] learns to co-optimize morphology and policy for grasping purposes and learns a
representation that can transfer across robots of different morphologies. This work aims to transfer
locomotion skills from small robots to large robots in the real world while leveraging simulated robots
for learning transfer rules across scales.
3. Research Approach
Our ultimate goal is to obtain policies for real large legged robots, where direct training on these
robots can be dangerous. Direct policy transfer from small robots to a large robot in the real world or
sim-to-real transfer on large robots may not work due to limited amounts of real large robot data.
However, we have access to legged robots of small scales and have simulation platforms that can
learn policies across scales. We combine policy transfer across scales with sim-to-real policy transfer
to learn policies that can work on real large robots with a small amount of real robot data.

Policy transfer across scales. We achieved policy transfer across scales within simulation on the
simple cart-pole problem by using an encoder/decoder representation learning framework (Figure 1
left), where the encoder maps robot states of different scales to a normalized state. A universal policy
then uses the normalized state to output a normalized action, and the decoder maps the normalized
action back to the raw action for a particular scale. The regularization loss is added to encode scale
invariant information in the encoded latent space. This encoder/decoder framework learns a
scale-invariant latent space that makes it much easier to transfer policies across scales. Our results
on a simulated canonical cartpole system demonstrate significantly better results than traditional
approaches such as domain randomization and are on par with the performance of typical control
based approaches such as linear quadratic regulator. As a proof-of-concept, the encoder/decoder
approach was successful for normalized states for cart-pole. The non-linear dynamics (and
environment interactions) for legged robots are unlikely to scale in a straight-forward fashion as in
cart-pole. This makes it nontrivial to extend our success on cartpole towards legged robots. We
explore novel network designs that enable it to approximate specific physical rules of legged robots.
Sim-to-real policy transfer. Our next step includes sim-to-real policy transfer for locomotion robots.
We use a latent variable model approach for achieving the sim-to-real adaptation part. We add an
additional latent variable “env info” representing the factors that change across environments such as
surface frictions or joint properties. The latent variable model will be learned across small robots in
simulation and small robots in the real world. The ultimate transfer happens by using small real robots
(abundant data) to estimate the environment specific information, and reusing the scale invariant
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policy with scale information estimated from a large simulated robot, enabling few shot generalization
on large real robots (Figure 1 right).

Figure 1. Left: system diagram. Right: Policy transfer pipeline design.
4. Current Results on Policy Transfer Across Scales on Laikago
We evaluate our proposed approach and several baselines, including (1) Domain randomization (DR):
A PPO policy that is trained across different scales on the Laikago robot for scales uniformly sampled
from 0.5-1.5, and then tested on scale 0.5, 1.0, 1.5, 2.0; (2) DR with a feature encoder: domain
randomization but with the feature encoder as in our method, trained on Laikago across scales from
0.5-1.5, and tested on scale 0.5, 1.0, 1.5, 2.0; (3) Our method: PPO with randomized scales between
0.5-1.5, and with a feature encoder and the regularization loss. (4) PPO policy on individual scales
(Oracle). We show the testing time reward characterizing moving distance (normalized by body
length) in the following table.

Method\Scale 0.5 1.0 1.5 2.0

DR 1.70 2.64 2.51 2.19

DR With Feature 1.64 2.60 1.74 1.84

Ours 1.82 6.59 3.39 2.92

PPO (Oracle) 8.3 7.9 5.4 4.5

These results show the unique challenge that policies that are trained on different scales cannot be
easily transferred with the domain randomization method. Especially for out-of-distribution scales
(scale 2.0), the DR method fails significantly compared with the PPO method. Our method gains a
slight edge compared with the baselines but there are rooms for improvement.
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